Steric Factors in the Azidolysis-Thermolysis of Some 5-Tosyloxymethylbi-cyclo[2.2.2]oct-2-enes to yield 4-Azatetracyclo[4.4.0.0 ${ }^{2.4} .0^{3.8}$]decanes

Sándor Berényi, ${ }^{\boldsymbol{a}}$ Gyöngyi Gulyás, ${ }^{\boldsymbol{a}}$ Gyula Batta, ${ }^{\boldsymbol{b}}$ Tamás Gunda ${ }^{\boldsymbol{b}}$ and Sándor Makleit*, ${ }^{a}$
${ }^{a}$ Department of Organic Chemistry, L. Kossuth University, H-4010 Debrecen, Hungary
${ }^{b}$ Research Group for Antibiotics, Hungarian Academy of Sciences, H-4010 Debrecen. Hungary

Abstract

Azidolysis of C-19 diastereoisomer tosylesters of morphine derivatives possessing a bridged ring C has been studied and 4 -azatetracyclo $\left[4.4 .0^{2.4} \cdot 0^{3.8}\right]$ decanes $\mathbf{6 b}, \mathbf{6 d}$ and $\mathbf{6 f}$ were formed via the substitution and subsequent intramolecular cyclization of the (R)-C-19 tosylesters $\mathbf{4 b}, \mathbf{4 d}$ and 4f, and primarily the ethylidene derivatives $\mathbf{7 a}, \mathbf{7 b}$ and $7 \mathbf{c}$ were obtained from (S)-C-19 tosylesters $\mathbf{4 c}$, $\mathbf{4 e}$ and $\mathbf{4 g}$. According to our experience the course of the reaction depends on the configuration of the C-19 centre of chirality and on the spatial requirement of the substitutent on C-6

In our previous paper ${ }^{1}$ the synthesis of a new substituted 4azatetracyclo $\left[4.4 .0^{2.4} .0^{3.8}\right.$] decane ring system 6a via an intramolecular cycloaddition was reported. Azide 5a was obtained by the azidolysis of the 7α-tosyloxymethyltetrahydro-6,14-endoethenothebaine $\mathbf{4 a} \mathbf{;}^{\mathbf{2}}$ thermal cyclization of azide $\mathbf{5 a}$ in turn afforded compound $\mathbf{6 a}$, probably through a triazoline intermediate. In this paper the dependence of the azidolysis and ringclosure reaction of diastereoisomeric secondary tosylesters $\mathbf{4 b}$ $\mathbf{4 g}$ on the configuration of the $C-19$ centre of chirality $\left(R^{1} \neq R^{2}\right)$ and on the character of substituent at $\mathrm{C}-6\left(\mathrm{R}^{3}=\mathrm{OMe}, \mathrm{Cl}\right.$ and H) are described. (R)-C-19 tosate $4 b^{3}$ and (S)-C-19 tosate $4 \mathbf{c}^{4}$ were prepared from thebaine by known procedures. Reaction product $\mathbf{2 c}{ }^{5}$ of 6-demethoxythebaine $1 \mathbf{c}^{6}$ and methyl vinyl ketone was reduced by sodium borohydride to yield a $1: 1$ mixture of secondary alcohols 3 e and $3 \mathrm{f},{ }^{7}$ which were separated after tosylation to afford compounds $\mathbf{4 f}$ and $\mathbf{4 g}$. Tosates $\mathbf{4 d}$ and 4e were similarly obtained from 6-chloro-6-demethoxythebaine

1
1 and $2 \mathrm{a} ; \mathrm{R}=\mathrm{OMe}$
b; $\mathrm{R}=\mathrm{Cl}$
c; $\mathrm{R}=\mathrm{H}$

	R^{1}	R^{2}	R^{3}
3a;	H	Me	OMe
$\mathbf{b} ;$	Me	H	OMe
c;	H	Me	Cl
$\mathbf{d ;}$	Me	H	Cl
e;	H	Me	H
$\mathbf{f} ;$	Me	H	H

1b. ${ }^{8}$ The configuration at $\mathrm{C}-19$ of the diastereoisomeric tosylesters has been determined by using the differences in their ${ }^{1} \mathrm{H}$ NMR spectra, ${ }^{9}$ viz. the dd signal of the $\mathrm{C}-8$-proton appears at lower field in the S - than in the R-diastereoisomer. Azidolysis of the $(R)-\mathrm{C}-19$ tosates $\mathbf{4 b}, \mathbf{4 d}$ and $\mathbf{4 f}$ was carried out in $N, N-$ dimethylformamide (DMF) at $100{ }^{\circ} \mathrm{C}$ for 24 h and azatetracyclodecane derivatives $\mathbf{6 b}, \mathbf{6 d}$ and $\mathbf{6 f}$ were obtained, respectively. The (S)-C-19 azides $\mathbf{5 b}, \mathbf{5 d}$ and $\mathbf{5 f}$, formed by inversion in the first step, were detected by TLC but only compound $5 \mathbf{d}$ was isolated. This compound is unstable and spontaneously converts into the ring-closed product 6d. Azidolysis of the (S)-C-19 tosates $\mathbf{4 c}, \mathbf{4 e}$ and $\mathbf{4 g}$ has been carried out under similar reaction conditions. All compounds gave the respective

4

6

5

	R^{1}	R^{2}	R^{3}
a;	H	H	OMe
b;	H	Me	OMe
c;	Me	H	OMe
d;	H	Me	Cl
e;	Me	H	Cl
f;	H	Me	H
g;	Me	H	H

Fig. 1 Conformational energy changes in tosates $\mathbf{4 d}$ and $\mathbf{4 e}$ by rotation of $\mathrm{C}-19$ about $\mathrm{C}-7-\mathrm{C}-19$. On the x-axis is shown the dihedral angle between $19-\mathrm{H}$ and $7-\mathrm{H}$.

R

Fig. 2 Energetically preferred conformations of tosates $\mathbf{4 d}$ and $\mathbf{4 e}(X=$ OTs), viewed along the C-19-C-7 axis
ethylidene derivatives $\mathbf{7 b}$, $\mathbf{7 d}$, or $\mathbf{7 f}$, as a major product via elimination. This is in accord with the results of detosylation of the 6 -methoxy tosate $4 c$ with potassium t-butoxide. ${ }^{4}$ In the azidolysis of the diastereoisomeric tosylesters 4 the different behaviour of the R and S isomers can be explained by simple molecular mechanics calculations. The structure of 6 -chlorotosates 4d and $\mathbf{4 e}$ has been minimized by the MMP2 method; C19 was rotated about the C-19-C-7 axis and energy changes originating from strains and Van der Waals interactions during the rotation were calculated. Results are shown in Fig. 1. On this basis the energetically most favourable arrangement of the (R)-C-19 isomer 4 d is that where the dihedral angle of $19-\mathrm{H}-\mathrm{C}-19-\mathrm{C}-7-7-\mathrm{H}$ is $180-200^{\circ}$. In this case the relative arrangement of $7-\mathrm{H}$ and the tosyloxy group is unfavourable towards elimination (Fig. 2) but the (S)-C-19 azide 5 d formed by inversion in an S_{N} reaction, can easily be converted into an aziridine derivative 6 d . On the other hand, for the (S)-C-19 isomer $\mathbf{4 e}$ in the most favourable arrangement ($19-\mathrm{H}-\mathrm{C}-19-\mathrm{C}$ -$7-7-\mathrm{H}$ angle is $60-90^{\circ}$) the tosyloxy group and the $\mathrm{C}-7$ hydrogen are nearly antiperiplanar, which is favourable for elimination. Parallel with the elimination a ring-closure reaction was observed as well. In the azidolysis of the 6 -methoxytosate 4 c the ratio of the ethylidene derivative 7 b to the cyclic product $\mathbf{6 c}$ was $10: 0.5$, while in the case of the 6 -chloro tosate 4 e the formation of the cyclic product could be detected only by TLC. Azidolysis of tosate $\mathbf{4 g}$ afforded a $7 \mathrm{f}: \mathbf{6 g} 2: 1$ mixture, indicating that there is no steric hindrance if $\mathrm{R}^{3}=\mathrm{H}$. In the case of all isolated cyclic products, complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments were performed by means of COSY, HETCOR, LR-INEPT, NOESY, and homonuclear NOE methods. In the Table the most characteristic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ shifts are summarized. It can be seen that the $8 \alpha-$ and $8 \beta-\mathrm{H}$ shifts, and the C-8, C-19, and $19-\mathrm{Me}$ ${ }^{13} \mathrm{C}$-values respectively, are significant for assignment of the C 19 configuration.

Since these ring systems are highly strained and rigid, the proton-proton distances can easily be calculated by means of molecular geometric programs and by energy minimization. ${ }^{10}$

Fig. 3 MMP2-minimized structure of compound 6d, together with some important ${ }^{1} \mathrm{H}-\left\{{ }^{1} \mathrm{H}\right\}$ NOE data

Table Characteristic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts, coupling constants (Hz) in parentheses

	Compound				
	6b	6 c	6d	$6 f$	6g
8-H	$\begin{aligned} & 1.59 \mathrm{~d} \\ & (12.5) \end{aligned}$	1.25 d	${ }_{(12.5)}^{1.61 \mathrm{~d}}$	$\begin{aligned} & 1.54 \mathrm{~d} \\ & (12.5) \end{aligned}$	${ }_{(12.5)}^{1.12 \mathrm{~d}}$
8-H	1.91 m	2.42 m	1.98 m	1.80 m	2.25 m
17-H	1.18 dd	1.30 m	1.10 dd	1.04 m	1.17 m
18-H	2.10 d	2.22 d	2.13 d	1.99 dd	1.98 dd
19-Me	1.26d	1.17 d	1.27 d	1.28 d	0.98d
C-6	88.84	87.33	77.10	43.07	39.35
C-8	20.19	32.51	21.25	20.65	32.82
C-17	37.60	38.06	38.08	35.70	38.52
C-18	38.29	39.36	41.49	35.48	34.71
C-19	56.80	66.64	56.94	59.12	65.81
19-Me	15.02	20.07	14.86	15.01	19.55

The configuration of the C-19 can be confirmed by homonuclear NOE measurements. In the case of compound $\mathbf{6 d}$ the average proton-proton distance calculated for the (S)-C-19 configuration is $r_{19-\mathrm{Me}, 8 x-\mathrm{H}} \approx 0.26-0.27 \mathrm{~nm}$, and would be $0.41-$ 0.42 nm for the R-configuration. Measured $f_{8 \alpha-\mathrm{H}}(19-\mathrm{Me})=$ $+9.7 \%$ NOE values correspond to the S-configuration only (Fig. 3). The distance between the $19-\mathrm{Me}$ and the $\mathrm{C}-7$ proton is not sensitive to configurational change although this distance is longer by 0.01 nm in the S-isomer than in the R one. In the case of the 6 -unsubstituted compounds, for the (S)-C-19 aziridine $6 f f_{8 a-H}(19-\mathrm{Me})$ is $+6 \%$ and no other NOE (except for $19-\mathrm{H}$) can be measured if the $19-\mathrm{Me}$ is irradiated, while the following values were determined for the R configuration: $f_{8 \alpha-\mathrm{H}}(19-\mathrm{Me}) \approx 0, f_{6-\mathrm{H}}(19-\mathrm{Me})+9.8 \%$, corroborating the cisarrangement of the $6-\mathrm{H}$ and $19-\mathrm{Me}$, i.e. the R-configuration for $\mathrm{C}-19$. This means that the homonuclear NOE measured on irradiation of the 19-Me group is essential for the determination of the C - 19 configuration. It is worth mentioning that the vicinal coupling value is $J_{7,19} \approx 3.7 \mathrm{~Hz}$ for the S-configuration and zero for the R one. Similar coupling values were obtained in the case of the 6 -methoxy diastereoisomeric pair $\mathbf{6 b} / \mathbf{6 c}$ as well. Since a dihedral angle of $55-60^{\circ}$ was calculated between $19-\mathrm{H}$ and $7-\mathrm{H}$ the coupling constants are not enough for the determination of the C-19 configuration.

Experimental

M.p.s were obtained on a Kofler hot-stage apparatus and are uncorrected. TLC was performed on Merck 5554 silica gel F_{254} foils with benzene-methanol ($8: 2 \mathrm{v} / \mathrm{v}$) developing mixture. The detecting agent was Dragendorffs reagent. IR spectra were recorded on a Perkin-Elmer 283B spectrometer. Mass spectra were measured with a VG-7035 (GC-MS-DS) instrument. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker WP 200 SY spectrometer operating at 200.13 MHz and 50.3 MHz ,
respectively; chemical shifts are reported in ppm (δ) from internal SiMe_{4}. For the standard 2D correlation measurements 1 M word (COSY) and 256 K (HETCOR) data tables and magnitude representation were used. The ${ }^{13} \mathrm{C} 1 \mathrm{D}$ spectra were measured by using the J-modulated spin-echo technique to obtain the number of coupled protons. For the measurement of the 1D NOE difference spectra 15-20 of preirradiation time was used and the lines of the multiplets were saturated lineselectively with $35-45 \mathrm{~dB} / 0.2 \mathrm{~W}$ attenuation using frequency cycling. ${ }^{11}$ Long-range INEPT experiments ${ }^{12}$ optimized for 6-8 Hz couplings were used to assign the quaternary carbon atoms.
7α-Acetyl-6-chloro-6-demethoxytetrahydro-6,14-endo-ethenothebaine $\mathbf{2 b}$.-A mixture of 6-chloro-6-demethoxythebaine $\mathbf{1 b}^{\mathbf{8}}$ $(1.0 \mathrm{~g}, 3.2 \mathrm{mmol})$, methyl vinly ketone ($2.7 \mathrm{~cm}^{3}, 32 \mathrm{mmol}$) and anhydrous toluene ($20 \mathrm{~cm}^{3}$) was refluxed for 24 h , the solvent was evaporated off, and the residue was triturated with diethyl ether ($20 \mathrm{~cm}^{3}$). The insoluble material was filtered off and the solvent was evaporated off. The residue was dissolved in anhydrous ethanol $\left(10 \mathrm{~cm}^{3}\right)$, acidified with ethanol $\left(10 \mathrm{~cm}^{3}\right)$ saturated with hydrochloric acid, and the precipitate was filtered off and dissolved in water $\left(10 \mathrm{~cm}^{3}\right)$. The aq. solution was alkalized with aq. ammonium hydroxide and the precipitate was filtered to yield compound $2 \mathrm{~b}(0.94 \mathrm{~g}, 89.5 \%)$, m.p. $63-64^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{N}, 3.45 ; \mathrm{Cl}, 9.3 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClNO}_{3}$ requires N , $3.63 ; \mathrm{Cl}, 9.19 \%$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.20(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}$, NMe), 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.40(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{d}, 17-\mathrm{H})$, $5.82(1 \mathrm{H}, \mathrm{d}, 18-\mathrm{H})$ and $6.52(2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH})$.

General Procedure for the Preparation of C-19-Diastereoisomeric Secondary Alcohol Mixtures 3c/3d and 3e/3f.--To a methanolic solution ($100 \mathrm{~cm}^{3}$) of a 7α-acetyl derivative $\mathbf{2 a} \mathbf{- 2} \mathbf{c}$ (10 mmol) at $0^{\circ} \mathrm{C}$ was added sodium borohydride (45 mmol) and the mixture was stirred at this temperature for 30 min , then water ($200 \mathrm{~cm}^{3}$) was added and the organic substance was extracted with chloroform $\left(3 \times 50 \mathrm{~cm}^{3}\right)$; the extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Tosates were prepared from the oily mixture $(1: 1)$ of the isomeric alcohols without purification.

General Procedure for the Preparation of Tosates $\mathbf{4 d}, \mathbf{4 e}, \mathbf{4 f}$ and $\mathbf{4 g}$.-To a stirred, cooled mixture of diastereoisomeric secondary alcohols (10 mmol) in anhydrous pyridine $\left(8.0 \mathrm{~cm}^{3}\right)$ was added a solution of toluene- p-sulphonyl chloride (15 mmol) in anhydrous pyridine $\left(6.0 \mathrm{~cm}^{3}\right)$. The mixture was left at room temperature for one day ($\mathbf{4 f}$ and $\mathbf{4 g}$) or for 6 days ($\mathbf{4 d}$ and $\mathbf{4 e}$) and then poured into saturated aq. $\mathrm{NaHCO}_{3}\left(400 \mathrm{~cm}^{3}\right)$. The organic material was extracted with chloroform $\left(3 \times 100 \mathrm{~cm}^{3}\right)$, washed with brine, dried, and evaporated. The residue was purified by column chromatography (Kieselgel $40,200 \mathrm{~g}$) with benzene-methanol $(9: 1)$ as eluent to obtain the appropriate tosates.

6-Chloro-6-demethoxy-7x-[(1R)-1-p-tolylsulphonyloxyethyl]-6,-14-endo-ethanotetrahydrothebaine 4d. M.p. $177-178{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: N, 2.6; S, 5.8. $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClNO}_{5}$ requires $\mathrm{N}, 2.58$; S , 5.92%); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.01(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{Me}), 1.25(1 \mathrm{H}, \mathrm{dd}, 8 x-\mathrm{H})$, $2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.25(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.15(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}, 17-\mathrm{H}), 5.58$ $(1 \mathrm{H}, \mathrm{d}, 18-\mathrm{H}), 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $7.85(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}) ;[\alpha]_{\mathrm{D}}^{24}$ -4 (c 0.1, CHCl_{3}).

6-Chloro-6-demethoxy-7 α-[(1S)-1-p-tolylsulphonyloxyethyl]-tetrahydro-6,14-endo-ethenothebaine 4e. M.p. 175-178 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: N, $2.6 ; \mathrm{S}, 5.9 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.48(3 \mathrm{H}, \mathrm{d}, 19-$ Me), $1.95(1 \mathrm{H}$, dd, $8 \alpha-\mathrm{H}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.45(3 \mathrm{H}$, s, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$), $3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.28(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{d}, 17-$ H), $5.25(1 \mathrm{H}, \mathrm{d}, 18-\mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $7.77(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}) ;[\alpha]_{\mathrm{D}}-15^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right)$.

6-demethoxy-7x-[(1R)-1-p-tolylsulphonyloxyethyl]tetrahy-dro-6,14-endo-ethenothebaine 4f. M.p. $156-158{ }^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ (Found: N, 2.8; S, 6.3. $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{N}, 2.76 ; \mathrm{S}, 6.32 \%$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.57(1 \mathrm{H}, \mathrm{dd}, 8 \alpha-\mathrm{H}), 1.28(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{Me}), 2.37(3$ $\mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.10(1 \mathrm{H}$, $\mathrm{m}, 19-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}), 5.31(1 \mathrm{H}, \mathrm{dd}, 17-\mathrm{H}), 5.47(1 \mathrm{H}, \mathrm{d}, 18-$ $\mathrm{H}), 7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}) ;[\alpha]_{\mathrm{D}}^{24}-12^{\circ}(c$ $0.1, \mathrm{CHCl}_{3}$).

6-Demethoxy-7x-[(1S)-1-p-tolylsulphonyloxyethy']tetra-hydro-6,14-endo-ethenothebaine $\mathbf{4 g}$. M.p. $130-132{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: N, 2.8; S, 6.3\%); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.81(1 \mathrm{H}$, dd, $8 x-$ $\mathrm{H}), 1.18$ ($3 \mathrm{H}, \mathrm{d}, 19-\mathrm{Me}$), 2.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 2.42 ($3 \mathrm{H}, \mathrm{s}$, PhMe), $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.38(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}), 4.39(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}), 5.44(1$ $\mathrm{H}, \mathrm{d}, 17-\mathrm{H}), 5.59(1 \mathrm{H}, \mathrm{dd}, 18-\mathrm{H}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH})$ and $7.75(2$ $\mathrm{H}, \mathrm{d}, \mathrm{ArH}) ;[\alpha]_{\mathrm{D}}^{24}-15^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right)$.

General Procedure for the Azidolysis of Tosates $\mathbf{4 b}-\mathbf{4 g}$.-A mixture of a tosate (2 mmol), ($10 \mathrm{~cm}^{3}$), sodium azide (10 mmol) and water $\left(2 \mathrm{~cm}^{3}\right)$ was heated at $100^{\circ} \mathrm{C}$ for 24 h , then poured into water ($200 \mathrm{~cm}^{3}$), and in the case of compounds $\mathbf{4 b}, \mathbf{4 d}, \mathbf{4 f}$ and $\mathbf{4 g}$ was extracted with chloroform ($3 \times 30 \mathrm{~cm}^{3}$). After the eluent had been dried the solvent was evaporated off and compounds $\mathbf{6 b}, 6 f, 6 \mathrm{~g}$ and 7 f were prepared as oily products, while compound $\mathbf{6 d}$ was obtained as crystalline material on purification by column chromatography. Compounds $7 \mathbf{b}$ and 7d obtained from tosates $\mathbf{4 c}$ and $\mathbf{4 e}$ were purified by crystallization from ethanol. In the case of substrate $4 c$ the aziridine $6 \mathbf{c}$ was obtained from the aq. mother liquor and was purified by column chromatography. Azidolysis of compound 4d was interrupted after 1 h , the mixture was poured into water ($200 \mathrm{~cm}^{3}$), the precipitate was filtered off and washed with diethyl ether, and the azide $\mathbf{5 d}$ was isolated from the ethereal solution.
$7 x-[(1 S)-1-A z i d o e t h y]-6$-chloro-6-demethoxy-6,14-endoethenotetrahydrothebaine 5d. M.p. $65-67^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-$ hexane); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2100\left(\mathrm{~N}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.25(3 \mathrm{H}, \mathrm{d}$, 19-Me) 2.39 ($3 \mathrm{H}, \mathrm{s}$, NMe), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.25 ($1 \mathrm{H}, \mathrm{m}, 19-$ H), $4.35(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}, 17-\mathrm{H}), 5.78(1 \mathrm{H}, 18-\mathrm{H})$ and 6.51 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}$).

7-Ethylidenetetrahydro-6,14-endo-ethenothebaine 7b, m.p. $203-205^{\circ} \mathrm{C}$ (from EtOH), was identical with authentic material (ref. 4).

6-Chloro-6-demethoxy-7-ethylidenetetrahydro-6,14-endoethenothebaine 7d. M.p. $170-174^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{N}, 3.9 ; \mathrm{Cl}, 9.7 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{Cl}$ requires $\mathrm{N}, 3.79 ; \mathrm{Cl}, 9.59 \%$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.70(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.82$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.30(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.48(1 \mathrm{H}, \mathrm{d}, 17-\mathrm{H}), 5.80$ ($1 \mathrm{H}, \mathrm{d}, 18-\mathrm{H}$) and $6.10(1 \mathrm{H}, \mathrm{m}, 19-\mathrm{H}) ;[\alpha]_{\mathrm{D}}^{24}-25^{\circ}(c 0.1$, CHCl_{3}).

6-Demethoxy-7-ethylidenetetrahydro-6,14-endo-ethenothebaine 7f. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.61(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{Me}), 2.40(3 \mathrm{H}, \mathrm{s}$, NMe), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.55(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}), 5.56(2 \mathrm{H}, \mathrm{m}, 17-$ and $19-\mathrm{H})$ and $5.90(1 \mathrm{H}$, dd, $18-\mathrm{H})$.
($2^{\prime} \mathrm{S}, 6 x, 7 x, 14 x$)-2'-Methyl-5', $6^{\prime}, 6,7-$ tetrahydro- $2^{\prime} \mathrm{H}, 8 \mathrm{H}-$ $1^{\prime}, 5^{\prime} ; 6^{\prime}, 14$-dicyclopyrido $\left[3^{\prime}, 4^{\prime} ; 7,6\right]$ thebaine $\left.\mathbf{6 b}\right) . \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 1.18$ ($\left.1 \mathrm{H}, \mathrm{dd}, 5^{\prime}-\mathrm{H}\right), 1.26\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{Me}\right), 1.59(1 \mathrm{H}, \mathrm{d}, 8 x-\mathrm{H}), 2.10(1$ H, d, $\left.6^{\prime}-\mathrm{H}\right), 2.35$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.44 ($3 \mathrm{H}, \mathrm{s}, 6-\mathrm{OMe}$), 3.85 ($3 \mathrm{H}, \mathrm{s}$, 3-OMe), $4.99(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $6.65(2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}) ; m / z 380$ ($\mathrm{M}^{+}, 20 \%$).
(2'R,6x,7x,14x)-2'-Methyl-5', $6^{\prime}, 6,7$-tetrahy'dro- $2^{\prime} \mathrm{H}, 8 \mathrm{H}-$ $1^{\prime}, 5^{\prime} ; 6^{\prime}, 14$-dicyclopyrido $\left[3^{\prime}, 4^{\prime}: 7,6\right]$ thebaine $\mathbf{6 c} . \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22$ ($\left.3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{Me}\right), 1.25(1 \mathrm{H}, \mathrm{m}, 8 x-\mathrm{H}), 1.28\left(1 \mathrm{H}, \mathrm{dd}, 5^{\prime}-\mathrm{H}\right), 2.17(1$ H, d, $\left.6^{\prime}-\mathrm{H}\right), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 2.97\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 3.48(3 \mathrm{H}, \mathrm{s}, 6-$ OMe), 3.87 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), $4.95(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H})$ and $6.65(2 \mathrm{H}$, dd, ArH); $m / z 380\left(\mathrm{M}^{+}, 10 \%\right)$.
(2'S,6x,7x,14x)-6-Chloro-6-demethoxy'-2'-methyl-5', $6^{\prime}, 6,7$-tet-rahydro- $2^{\prime} \mathrm{H}, 8 \mathrm{H}-1^{\prime}, 5^{\prime} ; 6^{\prime}, 14$-dicy clopyrido $\left[3^{\prime}, 4^{\prime}: 7,6\right]$ thebaine $\mathbf{6 d}$. M.p. ${ }^{170-172}{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane) (Found: $\mathrm{N}, 7.1 ; \mathrm{Cl}, 9.0$.
$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $\left.\mathrm{N}, 7.28 ; \mathrm{Cl}, 9.21 \%\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.10$ ($1 \mathrm{H}, \mathrm{dd}, 5^{\prime}-\mathrm{H}$), 1.27 ($3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{Me}$), .161 ($1 \mathrm{H}, \mathrm{d}, 8 \alpha-\mathrm{H}$), 2.13 (1 $\left.\mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 2.31(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.81(1 \mathrm{H}, \mathrm{s}, 5-$ $\mathrm{H})$ and $6.62(2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}) ;[\alpha]_{\mathrm{D}}^{24}-19^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) ; m / z 384$ ($\mathrm{M}^{+}, 100 \%$).
(2'S, $6 \alpha, 7 \alpha, 14 \alpha$)-6-Demethoxy-2'-methyl-5',6',6,7-tetrahydro$2^{\prime} \mathrm{H}, 8 \mathrm{H}-1^{\prime}, 5^{\prime} ; 6^{\prime}, 14$-dicyclopyrido $\left[3^{\prime}, 4^{\prime}: 7,6\right]$ thebaine $6 f$. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.04\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right), .128\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{Me}\right), 1.54(1 \mathrm{H}$, d, $8 \alpha-\mathrm{H}), 2.39$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.89 ($1 \mathrm{H}, \mathrm{d}, 5-$ H) and $6.65(2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}) ; m / z 350\left(\mathrm{M}^{+}, 30 \%\right)$.
($2^{\prime} \mathrm{R}, 6 \alpha, 7 \alpha, 14 x$)-6-Demethoxy-2'-methyl-5',6',6,7-tetrahydro$2^{\prime} \mathrm{H}, 8 \mathrm{H}-1^{\prime}, 5^{\prime} ; 6^{\prime}, 14$-dicyclopyrido $\left[3^{\prime}, 4^{\prime}: 7,6\right]$ thebaine 6g. $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.98\left(3 \mathrm{H}, \mathrm{d}, 2^{\prime}-\mathrm{Me}\right), 1.12(1 \mathrm{H}, \mathrm{d}, 8 \alpha-\mathrm{H}), 1.17(1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}\right), 1.98\left(1 \mathrm{H}, \mathrm{dd}, 6^{\prime}-\mathrm{H}\right), 2.36$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 3.84 ($3 \mathrm{H}, \mathrm{s}$, OMe), $4.87(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H})$ and $6.65(2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}) ; m / z\left(350\left(\mathrm{M}^{+}\right.\right.$, 25%).

Acknowledgements

Financial support from the Alkaloida Chemical Factory (Tiszavasvári, Hungary) is gratefully acknowledged. Our thanks are due to Dr. A. Zékány and Mrs. Zs. Gyulai for their help in the experimental work.

References

1 S. Berényi, Gy Gulyás, Gy. Batta and S. Makleit, Org. Prep. Proced. Int., 1991, 23, 111
2 J. J. Kopcho and J. C. Schaeffer, J. Org. Chem., 1986, 51, 1620.
3 K. W. Bentley, P. G. Hardy, J. W. Lewis, M. J. Readhead and W. I. Rushworth, J. Chem. Soc. C, 1969, 826
4 J. W. Lewis and M. J. Readhead, J. Chem. Soc., Perkin Trans. I, 1972, 881.

5 C. W. Hutchins, G. K. Cooper, S. Pürro and H. Rapoport, J. Med. Chem., 1981, 24, 773.
6 S. Berényi, S. Makleit, R. Bognár and A. Tegdes, Acta Chim. Acad. Sci Hung., 1980, 103, 365.
7 P. R. Crabbendam, T. S. Lie, J. T. M. Linders and L. Maat, Recl. Trar. Chim. Pals-Bas, 1984, 103, 296
8 S. Berényi, S. Makleit and L. Szilágyi, Acta Chim. Hung., 1984, 117, 307.

9 W. Fulmor, J. E. Lancaster, G. O. Morton, J. J. Brown, C. F. Howell, C. T. Nora and R. A. Hardy, Jr., J. Am. Chem. Soc., 1967, 89, 3322.

10 G. A. Michel, M. Proulx, G. Evrard, B. Norberg and E. Milchert, Can. J. Chem., 1989, 66, 2498.
11 K. E. Köver, J. Magn. Reson., 1984, 59, 485.
12 A. Bax, J. Magn. Reson., 1984, 57, 314.

Paper 0/05042C
Received 9th November 1990
Accepted 11 th December 1990

